Evaluation of Integrated Demand Management looking into Strategic & Tactical Flow Management

Presented by Christoph Moehlenbrink

12th ATM-Seminar, Seattle, WA
June 29, 2017
Integrated Demand Management

Motivation and Objective

Improving Demand Management & looking into the challenges of demand/capacity matching

– Work on more integrated operations and tools
– Leveraging existing systems
– Exploring existing NextGen capabilities
– if indicated... suggesting new automation tools

... exemplified on Newark Liberty Airport (EWR)
Integrated Demand Management
Strategic and Tactical Flow Management

Traffic Flow Mang. System (TFMS)
- Command Center
- Traffic Man. Initiative
- CTOP
- Flow Constraint Area

Time-Based Flow Mang. (TBFM)
- en/ar scheduling
- Speed/vectoring
- Meterfix
- Extended Metering

Harmonize
→ Overlay control structures for procedural integration
Integrated Demand Management
San Francisco (SFO) to Newark (EWR) Flight

Trajectory-Based Flight Operations

CTOP Departure
Depart SFO on CTOP-assigned EDCT time.

CTOP RTA to an FEA
Manage speeds to meet crossing time at a waypoint near FEA W.

Transition
Pass RTA waypoint & FEA W, then cross TBFM freeze horizon.

TBFM to meter fix
Follow ATC clearances for STA compliance.

* !
Integrated Demand Management

Motivation and Objective

1. Traffic Flow Management System (TFMS) with CTOP

 *CTOP: Collaborative Trajectory Option Program

2. Time-Based Flow Management (TBFM)

3. IDM Concept and IDM Operations Types
Integrated Demand Management

Objective of the study

To explore whether IDM is **beneficial** to deliver traffic more efficiently

Testing IDM types in a real time quasi simulation setup

1 IDM type: “EDCT only”

2 IDM type: “EDCT and RTAs”

3 compared to a Baseline
Integrated Demand Management

Conditions

- **Baseline**
 ‘miles-in-trail’ to regulate traffic into TBFM

- **IDM type: “EDCT only”**
 CTOP with EDCTs to replace MIT

- **IDM type: “EDCT and RTAs**
 CTOP with EDCTs and RTA assignment when airborne to improve ‘pre-conditioning’ accuracy
Integrated Demand Management Method

- **traffic scenario:** 5 hour runtime
- **runs:** n=10
- **this presentation:** 4*1 factor (CONDITION, SCENARIO='distributed')

<table>
<thead>
<tr>
<th>Experimental Design</th>
<th>Baseline</th>
<th>Integrated Demand Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
<td>BL Off</td>
<td>BL ON !</td>
</tr>
<tr>
<td>Distributed</td>
<td>Check Box OFF</td>
<td>Check Box ON</td>
</tr>
<tr>
<td>Gaggle</td>
<td>Check Box OFF</td>
<td>Check Box ON</td>
</tr>
</tbody>
</table>
Integrated Demand Management

Method

- **Independent variables:**
 - Baseline Checkbox off/on
 - EDCT only
 - EDCT + RTA
- **Dependent variables:**
 - throughput
 - airborne delay
 - ground delay
 - total delay

The simulation environment (MACS ERAM Planning Station & nCTOP)

MACS FMS simulation (B757/HW BL emulation)
Integrated Demand Management Method

Airborne delay regions

- meterfix versus extended metering

Ground delay assignment

- CTOP assigned (strategic) versus TBFM (tactical)
- hours prior to take Off versus last-minute (right before take Off)

‘Short-haul flights’ or ‘Internal Departures’
Integrated Demand Management

Research Questions

- What is the target **throughput rate** of the IDM conditions in comparison to the Baseline condition?

- What effect on **airborne delay** in the TBFM region, is caused by forcing **short-haul aircraft** into the arrival stream?

- What is the distribution of strategic (**CTOP assigned**) versus tactical (**TBFM assigned**) ground delay in the IDM conditions (versus Baseline)?

- What is the ratio of airborne and ground delay, as well as the **total delay** under different conditions?
Integrated Demand Management

Results: Throughput
Integrated Demand Management

Results: Throughput

<table>
<thead>
<tr>
<th>Condition</th>
<th>Scenario</th>
<th>Flights Landed in 4 hours (90-330 min)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Checkbox OFF)</td>
<td>Distributed</td>
<td>177</td>
<td>44.25</td>
</tr>
<tr>
<td>Baseline (Checkbox ON)</td>
<td>Distributed</td>
<td>183</td>
<td>45.75</td>
</tr>
<tr>
<td>EDCT Only</td>
<td>Distributed</td>
<td>176</td>
<td>44</td>
</tr>
<tr>
<td>EDCT+RTA</td>
<td>Distributed</td>
<td>174</td>
<td>43.5</td>
</tr>
</tbody>
</table>
Integrated Demand Management

Results: Throughput

- Throughput

 ‘Comparable’
Integrated Demand Management
Results: Airborne Delay
Integrated Demand Management

Results: Airborne Delay

Total Airborne Delay Distribution
R1 Distributed, Baseline, Ckbx OFF

Total Airborne Delay Distribution
R8 Distributed, EDCT+RTA

Delay Totals by Condition

Base On	Base Off	EDCT Only	EDCT+RTA
29.23 | 15.22 | 7.89 | 6.44

Integrated Demand Management

Results: Airborne Delay
Integrated Demand Management

Results: Airborne Delay

Table II. Extended Metering Region Airborne Delay, in Minutes

<table>
<thead>
<tr>
<th>Condition</th>
<th>‘acceptable’ [-5,0)</th>
<th>‘marginal’ [0, 5)</th>
<th>‘unacceptable’ [5,10)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CB Off</td>
<td>7</td>
<td>126</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>Baseline</td>
<td>3</td>
<td>68</td>
<td>65</td>
<td>38</td>
</tr>
<tr>
<td>EDCT</td>
<td>19</td>
<td>150</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>EDCT+RTA</td>
<td>17</td>
<td>157</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table III. Meter Fix Region Assigned Airborne Delay, in Minutes

<table>
<thead>
<tr>
<th>Condition</th>
<th>‘acceptable’ [-2, 0)</th>
<th>‘marginal’ [0, 2)</th>
<th>‘unacceptable’ [2, 4)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CB Off</td>
<td>11</td>
<td>78</td>
<td>62</td>
<td>42</td>
</tr>
<tr>
<td>Baseline</td>
<td>11</td>
<td>45</td>
<td>62</td>
<td>74</td>
</tr>
<tr>
<td>EDCT</td>
<td>7</td>
<td>93</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td>EDCT+RTA</td>
<td>12</td>
<td>112</td>
<td>61</td>
<td>7</td>
</tr>
</tbody>
</table>
Integrated Demand Management

Results: Airborne Delay

- Throughput
 - ‘Comparable’

- Airborne Delay & Prioritizing Short-Haul Flights
 - ‘IDM conditions: less unacceptable airborne delays’
Integrated Demand Management

Results: Ground Delay Distribution
TFMS and TBFM Ground Delay (All flights)

1. **Distributed Baseline Checkbox ON: MIT and TBFM Ground Delay**
 - TBFM Ground Delay
 - MIT Ground Delay

2. **Distributed Baseline CkBx OFF: CTOP and TBFM Ground Delay**
 - TBFM Ground Delay
 - TFMS Ground Delay

3. **Distributed EDCT Only: CTOP and TBFM Ground Delay**
 - TBFM Ground Delay
 - TFMS Ground Delay

4. **Distributed EDCT+RTA: CTOP and TBFM Ground Delay**
 - TBFM Ground Delay
 - CTOP Ground Delay
TBFM and TFMS (Miles-in-trail or CTOP) Ground Delay
"INTERNAL" DEPARTURES ONLY

Baseline, Checkbox ON

Baseline, Checkbox OFF

EDCT Only

EDCT+RTA

Runway Crossing Sequence
Integrated Demand Management

Results: Ground Delay

- Throughput
 ‘Comparable’

- Airborne Delay & Prioritizing Short-Haul Flights
 ‘IDM conditions: less unacceptable airborne Delays’

- Ground Delay and Minimizing Tactical Delay
 ‘IDM conditions: minimizing tactical delay works’
Integrated Demand Management

Results: Total Delay
Results: Total Airborne and Total Ground Delay per flight

Baseline, Checkbox OFF

Baseline, Checkbox ON

EDCT Only

EDCT+RTA
Results: Total Delay

![Radar Chart]

- Sum Ratios, log10
- Base On
- Base Off
- EDCT Only
- EDCT+RTA
- Airborne Sum ratios
- Ground Sum ratios
- Total sum ratio
Integrated Demand Management

Results: Total Delay

- Throughput
 - ‘Comparable’

- Airborne Delay & Prioritizing Short-Haul Flights
 - ‘IDM conditions: less unacceptable airborne Delays’

- Ground Delay and Minimizing Tactical Delay
 - ‘IDM conditions: minimizing tactical delay works’

- Shift of Airborne to Ground Delay under the Umbrella of Total Delay
 - ‘IDM conditions: less airborne delay + more ground delay’
Integrated Demand Management

Summary & Conclusion

- Throughput
 - ‘Comparable’

- Airborne Delay & Prioritizing Short-Haul Flights
 - ‘IDM conditions: less unacceptable airborne Delays’

- Ground Delay and Minimizing Tactical Delay
 - ‘IDM conditions: minimizing tactical delay works’

- Shift Airborne to Ground Delay under the Umbrella of Total Delay
 - ‘IDM conditions: less airborne delay + more ground delay’
Discussion

Additional interests:

- Uncertainties (Dep Error and Wind Forecast Error)
- EDCT vs. EDCT+RTA
- Quasi Real Time Simulation Approach
Conclusion & Outlook

- Study demonstrated that IDM is beneficial: with respect to delivering traffic more efficiently
 - Delays can be shifted from airborne to ground delay for RTA and non-RTA conditions while a target throughput rate can be satisfied
 - Under good predictability of airport capacity last minute tactical TBFM delay can be minimized

Future Work

- IDM benefits looking into demand/capacity imbalances e.g. to weather
Acknowledgments

The authors would like to thank the lab personnel at Airspace Operations Lab (AOL) at NASA Ames Research Center and all of our airspace Subject Matter Experts for the invaluable contributions to the IDM concept.

Thank you!

Email:
christoph.p.moehlenbrink@nasa.gov
Extra Slides