The Structure and Dynamics of the Multilayer Air Transport System

Yanjun Wang∗†, Xinhua Xu∗†, Minghua Hu∗‡, and Jianming Zhan∗‡

∗College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China
†National Key Laboratory of Air Traffic Flow Management, Nanjing, China
‡Air Traffic Management Bureau, Civil Aviation Administration of China, Beijing, China

Email: {ywang, xuxinhua, minghuahu}@nuaa.edu.cn, jinzhan@amtb.org

Abstract—The field of air traffic management (ATM) has a strong interdisciplinary nature, combining of technological, management, economic and regulatory aspects. The fully understanding of the structure and dynamics underlying the system continues to be significant challenges in the field. Here we present a novel framework for the study of the structure and dynamics of the air transport system building upon recent advancement of network science and big data science, as well as taking into account of the unique operation practicals, thus bridging the gaps between academic field and operational world. We show that the structure of air transport system can be captured by four interdependent networks including airlines network, airport network, air route network, and ATM network. In particular, we present initial results on spatial-related dynamics of the system using one-year flight data records. We find by analyzing flight delay data that (i) airports with similar geographical locations exhibit similar dynamics; (ii) unlike other spatial-embedded complex systems, the propagation of flight delays or failure in the system decays slowly, and the correlations of the failure nodes reaching to 0 when the distance between them approaching to ∼1,000km. Our findings may have the implications for the efficient management of air transport system.

Index Terms—Air traffic management, multilayer network, big data, spatial correlation, cascading failure

I. INTRODUCTION

The last decade has witnessed the improvement of air traffic management (ATM) system in its safety, capacity, and efficiency. Great efforts have been made to enhance the performance of ATM system, ranging from the introduction of new operational concepts, through the deployment of advanced automation systems, to long-term research activities. Due to its interdisciplinary nature, the predictability and controllability of such complex social-technical system remain great challenge. Up until now, not much is known about the complete picture of the structure and the dynamics of the system. This is the focus of the present article.

Like many other complex systems, air transport system is composed of a huge number of interlinked subsystems which operate with their own mechanisms. Network sciences has been significantly advanced our understanding and management of real complex systems since the beginning of last century, ranging from physics, chemistry, through economy, to human social science [1]. It provides a theoretical framework for us to understand the origins and characteristics of complexity of the systems. The availability of large amount of operating records – data on flight tracks, operational information, and aircraft performance – has created unprecedented opportunities for investigating air transport system, allowing analyzing of the structure and dynamics at any scale from various perspectives.

Given the importance of air transport in the propagation of epidemics such as influenza and severe actuary respiratory syndrome, there are considerable number of studies focus on the airport networks structure[2], [3], and their roles in the prediction and predicability of global epidemics[4]. Airport networks are typically constructed from flights data. The nodes represent airports, and a edge will be added between two nodes if there is a direct flight between the two airports. The network can be directed and weighted when considering the directions and the volume of flights or passengers in a given time period. Guimerà et al. have suggested that at a long range scale, the connections of airport network are almost symmetrical, therefore there is no need to consider arc directions[5]. Recent advances towards quantifying delays propagation in the US air transportation system have shed light on the systematic investigation of delays from network perspective [6], [7]. Although the approach of complex networks has been immensely successful, it still has less impact on the ATM field due to the fact that it disregards much important information contained in the operational data. Thus, network researchers have turned their attention on the time-varying and multilayer nature of networks. A recent review on the multilayer network can be found in [8]. As an example of the application of multilayer network theory, the air transport network are commonly considered as the aggregated layers of airlines networks [9], [10]. One of the core components of air transport system – air traffic management system – is still missing.

The dynamics occurring on the top of the structure of the system preserves enrich information on how system operates. One of the most studied dynamical process in air transport system is flight delay. Flight delay can be modeled as the dynamical interaction of a set of flights flying between connected airports. It is unclear, however, how delay propagate in the air transport network. To date, there have been extensive work looking into the many aspects of flights delay. Many pioneering works on delay propagation use empirical data to explore the cause for initial and primary delays[11], [12], [13], [14]. The primary delays can trigger a cascade of secondary
delays which may spread over the airline networks and airport networks. The delay introduced by the upstream delay are called reactionary delays. A comprehensive study given by Jetzki et al. has analyzed reactionary delays in European airports using the data collected by the Central Office for Delay Analysis [15]. The airline network structure is suggested to play an important role in absorbing delay. Optimizing flight turnaround process by dynamical scheduling buffer time proved to be useful for minimizing delay propagation[12].

In other instances, further realism has been introduced by the use of queueing theory to analytical study airport delays or enroute delay[16], [17], [18], [19], [20]. Pyrgiotis et al. developed an analytical queuing and network decomposition model called Approximate Network Delays (AND) model to study the delay propagation in the US air transport network [6]. The delay propagation algorithm is to capture the "ripple effect" by tracing individual flight affected by local congestion and updating flight profiles when flights delays occur at upstream airports. Fleurquin et al. proposed the measures to quantify the macro-scale behavior of delay dynamics [21]. They examine a variety of graph metrics like degree distribution and coefficients. Interconnected airports are identified to assess the level of air transport system congestion and the importance of network connectivity in unfolding of delay spreading mechanism. Ingredients of their model are aircraft rotation, passenger connectivity, and airport congestion. Using data-driven approach, an agent-based model was developed which is able to reproduce the delay patterns captured in the US air transport network [21], [22].

Another aspect that remains little addressed is the cascading failure in air transport system, although much focus are given either to the robustness and vulnerability of the system [23], or to the propagation of flight delays through airlines network. Reports from other fields have demonstrated that small disruptions in the network can trigger unexpected domino-like cascade failure [24]. The very "famous example" is the power grid system blackout in Northeastern U.S. and Eastern Canada in 2003[25]. To prevent such cascading failure happening, two questions have been recently risen. How the failure propagates through the system and how should we build a "safety wall" to stop the propagation?

In this article, we first show that the structure of air transport system can be represented by four interdependent networks, namely airline network, airport network, air route network, and air traffic management network (i.e. sector network). We give our attention on the flight delay at the airport level rather than individual flight delay to study the dynamics of air transport system. In particular, we define the failure of airports/route point (sector was not analyzed yet due to the limitation of current empirical dataset) according to the aggregated flights delay at the node. Interestingly and surprisingly, it found that the spatial correlations of failure are quite similar in the airport network and air route network. The correlations approach to zeros when the distances between nodes over 1,400km and 900km for the airport network and air route network respectively. We discuss both the implications of the current results and opening questions left to be answered.

II. THE STRUCTURE OF THE MULTILAYER AIR TRANSPORT SYSTEM

A. Airport Network

The pioneering work on the study of the structure of air transport system was from statistical physics, focusing on analysis of topological characteristics the system from complex networks theory [26]. The structure of the system was abstracted to a directed/undirected, weighted/unweighted network which normally referred as airport network, with nodes are the airports and edges are determined by flights. Table I summarizes analytical results of airport networks worldwide.

One of the drawbacks of using flights as link to construct air transport network is that much information encoded in flights data is missing. To overcome this difficulty, the temporal information must be taken into consideration. Topological changes of the network were measured with characteristics that focus on degree distribution which have been used in prior research on network dynamics. The degree distribution of a graph is defined as a discrete probability distribution that expresses that probability of finding a node with degree k. He et al. studied Chinese airport network in 2004 and concluded that the network is small-world without scale-free property since the degree distribution of nodes is exponential rather than heavy tailed[27]. In a weekly cycle, the Chinese airport network exhibits scale-free properties, and the weekly cumulative degree distribution of nodes follow Pareto law [28]. At a even more small time scale, we could see the transformation of the network in Fig. 1a and Fig. 1b. There are few flights flying in early morning between 0600 and 0700, while traffic demands increase sharply after 0700. To examine the temporal evolution of the networks, we construct airport networks using every 2 hours flight data. Across the database, there are 396×12 networks generated. The cumulative nodes degree distributions are plotted in Fig. 1c. It is clearly shown that the networks are quite different before and after 0600. Before 0600, the network node degree distribution obeys power law decay, while more airports are connected after 0600AM with daily air transport starts. These results agree with previous findings that Chinese airport network is small-world with scale-free properties. Other properties such as community structure are still under investigation.

B. The air route network

Another widely investigated network in air transport field is air route network or air navigation route network[29]. Normally, flights will fly along route structure thus bring the system into life. One may trace a flight back to its origin along the route. In the following section, we will compare the characteristics of the air route network and airport network. Normally the optimization of network traffic flow are done at this layer. However, the propagations of airspace congestion and flights delay in the air route network requires research effectors.

The recent shift of focus from investigating a single layer network to the multilayer network has also been improving the understanding of air transport system as well. Special
attention is given to decompose the airport network into many layers according to different air carriers[9], [10], [30]. Due to lack of knowledge of air traffic control, there is still one important component missing in the previous work, i.e. the air traffic management layer. It is the core structure of air transport system from operation point of view. All the air traffic controllers in charge of their own sectors inter-linked form the backbone of the air transport system, working with staff from airports and airlines to provide air transport service to customers.

C. The 5 interdependent layers of air transport system

In Fig. 2, we show the interdependent layers of the air transport system. As can be seen from the figure, the basic component of the system is the network formed by the flights operated by a single aircraft. It should be mentioned that air crew should be taken into account when one tries to analyze the propagation of flight delay. The late arrival of air crew and passengers can cause the subsequent flight delay. It is however out of the scope of current study.

The idea of decomposition of the structure of air transport system is inspired from the idea of collaborative decision making (CDM). Three main parties of CDM are airports, airlines, and air navigation service providers (ANSP), each of which can be represented as one layer of the networks. Zanin et al. and Du et al. have studied the multilayer air transport network with each airline’s network as a single layer[9], [10]. The air traffic management layer is disregarded.

Sector can be seen as the operation unit of air traffic management, controlled by one or two air traffic controllers. The dynamics of one sector can influence other sectors that may be not linked directly. For instance, when there is not enough capacity for handling incoming traffic, traffic flow management initiatives are issued which will cause upstream flights delayed. Thus, the structure of air traffic management layer can be captured by the sector network. The nodes of the network are all the sectors, including tower/approach/ground control sectors, approach sectors, and enroute sectors. The determination of the edges depend on the letter of agreements (LOA) between different air navigation service providers (ANSPs) or air traffic control units which state detailed information on flights transfer between sectors. There is an edge between two nodes if there is traffic transferred between the two sectors. Otherwise, there is no edges between the two sectors even they are physically adjacent. Sector network can be modeled as directed and weighted graph if one considering the directions of transferring traffic and the volume of traffic.

In Fig. 3 presents the main 3 layers of air transport system in China.

In Fig. 4, we show the degree distributions of the three main networks of Chinese air transport system, airport network, air route network, and sector network. The statistical information of the three networks is given in table II. As it can be seen from the figure and the table, both sector network and air route network exhibit similar characteristics which are significantly different from airport network. Although the total number of nodes in air route networks or sector network is more than total number of nodes in airport network, both the average degree of
the nodes and the maximum degree are quite smaller than that in airport network. The airport network can be characterized with small network properties and scale free feature while the other two are not. This significant difference in network structure could be the main reason that the studies of airport network from complex networks have little impact in the air transport field.

Here we have just presented our view on the structure of air transport system, opening a new avenue for the study of the fundamental structure of air transport system. Still, there are great work to be done in order to uncover fundamental properties of the multilayer of the air transport system.

III. THE DYNAMICS OF THE AIR TRANSPORT SYSTEM

The advancement of big data science together with the availability of large operational datasets allow us to unreal the hidden dynamics of air transport system. One of the most studied dynamical aspects in air transport is flight delay. A considerable amount of efforts have been devoted to investigate flight delay mainly from two perspectives. The first group of studies aim to minimize flight delay by optimizing utilizing available resources, while the second school of work is trying to understand how flight delay propagate through airlines’ network or airport network. Our interest is to study the dynamics occurring on top of the networks that are described in Section II by the analysis of flight delay. The question raised here is that how flight delays spatially distributed in the networks? The occurrence of flight delay suggests that there are disruptions happening in the system. Thus, it is directly linked to the resilience and vulnerability of air transport system [26]. In the following, we show our initial analytical results on the spatial correlations of flight delay in airport network and the cascading failure behavior in both airport network and air route network. The analyses are based on two monthly flight datasets (1st August 2012 to 31st August 2013) obtained from the Operations Management Center of Air Traffic Management Bureau, Civil Aviation Administration of China, and the Bureau of Transportation Statistics, United States Department of Transportation.

A. The correlations on flight delay between airports.

Pearson correlation coefficient is used to capture the correlations between flight delays in different airports. To make time series data comparable, we use 15 minutes as sampling rate to calculate departure flight delays at each airport. Let \(X_i(t) \) represents the departure delay at \(i \)th airport at \(t \)th time slot, while \(T \) is the number of time slots that are observed in a traffic scenario.

To compute the correlation \(\rho_{ij} \) between \(i \)th airport and \(j \)th airport, one can use the following equation

\[
\rho_{ij} = \frac{E(X_iX_j) - E(X_i)E(X_j)}{\sqrt{E(X_i^2) - E^2(X_i)}\sqrt{E(X_j^2) - E^2(X_j)}},
\]

where \(\rho \in [-1, 1] \).

To study the correlation of the flight delays in airport network, we calculate the cross-correlation matrix \(C \) of airport departure delays data according to eq 1. It is very interesting to find that air transport systems in two countries exhibit quite similar behaviors. Fig. 5 plots the top 14 correlated airport pairs (\(\rho_{ij} > 0.6 \)) in the two air transport systems.

As can be seen from the figure, flight delays in the airports that are located note far from each other show similar characteristics maybe due to similar operational environments and geographical locations. For example, departure delays in airports that are located in the Pearl River Delta area or Yangtze River Delta area are most likely to have similar patterns. Newark airport, LaGuardia airport and Kennedy airport are all located in New York metropolea area, while Boston Logan airport and Philadelphia airport have close relationships with these three airports. Likewise, airports in Washington area (Baltimore airport and Washington National airport) and Miami area (Fort Lauderdale airport, Orlando airport and Tampa airport) are all have higher correlation coefficients. The other six airports with a high correlative degree are located in the western coast. In China, the correlation coefficients of airports between Guangzhou and Shenzhen, Shanghai Pudong and Shanghai Hongqiao, Changchun and Harbin, are much larger than the other airport pairs. The results indicates that geographical location as the external factor has impact on the dynamics of air transport system.

B. Cascading failure behavior of the air transport system

The understanding of the temporal-spatial characteristics of the cascading failure of the network systems has been recognized as an important step to predict and minimize the cascading failure. A very small failure in one component of the system may lead to catastrophic consequences[31]. Similar to other spatial-embedded system, here we try to understand how far the “failure” can propagate in the system so that we may be able to set up a “safety wall” to prevent that failure.

To do so, average flight delay at each airport/route point at a given time window \([t_1, t_2]\) is first calculated. Then, the state of the node \(x_i \) is determined. \(x_i = 1 \) if average flight delay is higher than predefined threshold (\(\alpha \) in minutes per flight), i.e. node is failure/degraded. Otherwise, \(x_i = 0 \). The concept of spatial correlations, \(C(r) \) is introduced to quantify the relation between failures separated at a distance \(r \). \(C(r) \) is calculated as

\[
C(r) = \frac{1}{\sigma^2} \frac{1}{\sum_{i,j,i \in F} \delta(r_{ij} - r)} \sum_{i,j,i \in F} \delta(r_{ij} - r)
\]

where \(\delta() \) is a selecting function to select the nodes whose Euclidean distance to the failure node is \(r \) (or within a range). Positive values of \(C(r) \) means positive correlations between nodes suggesting the tendency of failures to be close to each other, while negative values indicate anti-correlations.

We calculate the daily spatial correlations based on hourly flight delay at airport as the function of \(r \). Fig. 6a and 6b are the averaged correlation results over one year for airport network and air route network respectively. The time period \([t_1, t_2]\) seems to have little effects on the trend of correlation results since all the curves of \(C(r) \) exhibit similar shapes.
The 5th layer: Flights network formed by an aircraft. The nodes are the airports, while edge indicates there is at least one direct flight operated by this aircraft exists between two airports.

The 1st layer: Airline’s network which is the aggregated network of all the flights networks.

The 2nd layer: Airport network which is the aggregated network of all the airlines’ networks.

The 3rd layer: Air route network which is the flight route map of a given region.

The 4th layer: Sector network which is the backbone of the air transport system, plays fundamental role in our daily life. The nodes are the sectors controlled by the controllers. The edges are defined based on the traffic flow between the two sectors.

Fig. 2. The 5 interdependent layers of the air transport system.

Fig. 3. The airport network, air route network, and sector network in Chinese air transport system.
Fig. 4. The complementary cumulative density functions of 3 networks. Note that scale for airport network is logarithmic, while the scale for air route network and sector network is semi-logarithmic.

Fig. 5. The correlation coefficients of airport pairs.

as shown in the figures. These findings are quite different from what have been reported from other complex systems, such as power grid system and road traffic system. Instead of decaying in the form of power-law, $C(r)$ decrease dramatically at the initial few steps. It is in agreement with the findings in previous section that airports with similar geographical locations show similar behavior. However, in airport network, $C(r)$ fluctuates around 0.03 before it drops blow 0 when $r > 1,350 km$. In the air route network, $C(r)$ decreases almost linearly with the increasement of r.

The effect of α is examined using the whole dataset. We find there are three main patterns as shown in Fig. 6c, 6d, and 6e. In the morning, α and r have coupling effect on the correlation results; while in the afternoon, α seems has little influence on the results when $r > 1,900 km$. In the evening, there are more anti-correlated nodes when α is small while r is large.

Although the approach used here is simple, it still can capture the instinct dynamics of air transport system. The determination of failure of the node should be more realistic by considering the capability of the node. To validate this findings, a theoretical model is going to be developed in future work.

IV. DISCUSSIONS

The filed of air traffic management has a strong interdisciplinary nature, combining of technological, economic and reg-
Fig. 6. Spatial correlations of cascading failures in air transport system. (a), Spatial correlations in airport network and in air route network (b). X-axis is the distance r in km. (c) and (d) are the effects of physical distance and the strength of resilience of the nodes, with x-axis is α and y-axis is the distance r in km.

V. ACKNOWLEDGEMENTS

This work was partially supported by the National Natural Science Foundation of China (grant number: 61304190) and by the Natural Science Foundation of Jiangsu Province of China (grant number: BK20130818).

REFERENCES

Yanjun Wang is an Associate Professor of College of Civil Aviation of Nanjing University of Aeronautics and Astronautics. He received B.S. in Air Traffic Management and Dispatch and MS in Transportation Engineering from NUAA in 2004 and 2007 respectively. He was a doctoral researcher at EUROCONTROL Experimental Center from 2009 to 2012, and received his PhD in information and network science from Tcom ParisTech (ENST), France. He also holds an air traffic controller’s license. His research interests cover human factors, complex system modeling and analysis.

Xinhua Xu is current a master student at College of Civil Aviation, Nanjing University of Aeronautics and Astronautics. Her research focus is on the data analysis in air transportation.

Minghua Hu is a professor and doctoral supervisor at the Civil Aviation College of Nanjing University of Aeronautics and Astronautics (NUAA), China. He is also an expert of Civil Aviation Administration of of China (CAAC) and a member of future national ATFM system panel.

Jianming Zhan is the director of air traffic management division, air traffic management bureau of CAAC. His research interest covers air traffic flow management and airspace management.