How Airlines Set Scheduled Block Time

Lu Hao, Mark Hansen
University of California, Berkeley
ATM R&D 2013
06/10/2013
Outline

• Background and objectives
• Industry practice
• Empirical behavioral study
 – Data and modeling
 – Population model
 – Airline analysis
• Ongoing work
SBT in the Context of Flight Time Decomposition

Effective flight time (EFT)

Gate delay

Departure delay

Taxi-out

Air time

Arrival delay

Taxi-in

CRS departure time

Actual departure time

Wheels off

Actual block time (FT)

CRS arrival time

Wheels on

Scheduled block time (SBT)

Effective flight time (EFT)

Background

• SBT is crucial in airline scheduling
• Airlines’ trade-off in setting SBT
 – Shorter SBT
 ▪ SBTs are expensive: crew cost, fuel cost
 ▪ Aircraft utilization
 ▪ More competitive in the market
 – Longer SBT
 ▪ Better on-time performance
 ▪ Less propagated delay
Background and Objectives

- SBT is set ahead of time based on historical performance
 - Related to actual block time performance
 - Variability as well as mean
 - Capture the impact of block time distribution
- Opportunities for reduced cost and improved reliability
- Consider heterogeneity across airlines
Outline

• Background and objectives
• Industry practice
• Empirical behavioral study
 – Data and modeling
 – Population model
 – Airline analysis
• Ongoing work
Industry Practice on SBT

- Interview with Delta Air Lines personnel
- Block time setting group creates annual SBT file
- Based on historical block time data: BTR → SBT
 - Proportion of flights: realized block time ≤ SBT

- BTR: 65% to 75%
- Longer flights: set lower BTR to avoid early arrivals
- Hub airports (ATL): lower BTR to avoid early arrivals
- Internal feedback: shorter SBT for more turn time
Industry Practice on SBT

- Interview with Delta Airlines personnel
- Block time setting group creates annual SBT file
- Based on historical block time data: BTR → SBT
 - Proportion of flights: realized block time ≤ SBT

- Early arrivals:
 - No gate available, ramp congestion; passenger don’t like waiting
 - Crew cost won’t be reduced
 - On-time performance only counts late arrivals; no credit for early arrivals

- BTR: 65% to 75%
- Longer flights: set lower BTR to avoid early arrivals
- Hub airports (ATL): lower BTR to avoid early arrivals
- Internal feedback: shorter SBT for more turn time
Industry Practice on SBT

- Interview with Delta Airlines personnel
- Block time setting group, annual SBT file
- Based on historical block time data: BTR \rightarrow SBT
 - Proportion of flights: realized block time \leq SBT
- Adjustment to SBT file
 - Comparison with other airlines
 - Simulation for new facility improvement
 - Sometimes adjusted to improve on-time performance

- Gate delay not explicitly considered
- Potential improvements for SBT through reducing flight time variability
Outline

• Background and objectives
• Industry practice
• Empirical behavioral study
 – Data and modeling
 – Population model
 – Airline analysis
• Ongoing work
Data for Models

- Scheduled block-time (SBT)
 - Uniform for each individual flight over a quarter
 - Median SBT

- Data from two consecutive years
 - SBT: year 2010
 - Historical flight data: year 2009

- Individual flight defined by airline flight number, and OD, e.g., AA 112 from ORD-LGA
 - Flight by flight, Quarter-to-quarter match
 - Flights flown more than 50 times on weekdays in both quarters in the two years
 - 17,733 observations
Variables – Flight Level

- 50^{th} to 100^{th} percentile of block time distribution
 - Captures the distribution piece-wise
 - 50^{th} percentile (median BT): $Q_{0.5}^{f,q,y}$
 - The difference every 10^{th} percentiles: $d_{56}^{f,q,y} = Q_{0.6}^{f,q,y} - Q_{0.5}^{f,q,y}$
Variables – Flight Level

• 50th to 100th percentile of block time distribution
 – Captures the distribution piece-wise
 – 50th percentile (median BT): $Q_{0.5}^{f,q,y}$
 – The difference every 10th percentiles: $d_{56}^{f,q,y} = Q_{0.6}^{f,q,y} - Q_{0.5}^{f,q,y}$

• Average gate delay
Variables – OD level

• Flight distance
• Competitiveness of the OD pair
 – Herfindahl index (HHI): $HHI_{od} = \sum_{i=1}^{N} \left(\frac{s_i}{s_{od}} \right)^2$
 – Increases in HHI \rightarrow Decrease in competition, more concentrated market
• Airport characteristic
 – OEP 35 airports
 – Dummy variables for origin and destination airports
Model Specification

• Assumption: scheduled block-time is affected by the actual flight data in the same quarter of the previous year

\[SBT_{a,y+1}^{f} = \alpha_1 \times D_{f}^{qv} + \alpha_2 \times \text{dist}_{od} + \beta_1 \times Q_{0.5}^{f,q,y} + \sum_{i=5}^{9} \beta_{i-3} \times d_{i,i+1}^{f,q,y} + \alpha_3 \times HHI_{od} + \]

\[\sum_{q=2}^{4} \gamma_q \times Q_{q}^{y} + \gamma_5 \times OEP_{o} + \gamma_6 \times OEP_{d} + \text{const} \]
Estimation Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.011</td>
<td>0.214</td>
<td><.0001</td>
</tr>
<tr>
<td>D_{ay}^f</td>
<td>0.039</td>
<td>0.0044</td>
<td><.0001</td>
</tr>
<tr>
<td>$Dist_{od}$</td>
<td>0.009</td>
<td>0.00038</td>
<td><.0001</td>
</tr>
<tr>
<td>$Q_{0.5}^{f,q,y}$</td>
<td>0.936</td>
<td>0.0033</td>
<td><.0001</td>
</tr>
<tr>
<td>$d_{56}^{f,q,y}$</td>
<td>0.463</td>
<td>0.0309</td>
<td><.0001</td>
</tr>
<tr>
<td>$d_{67}^{f,q,y}$</td>
<td>0.236</td>
<td>0.0256</td>
<td><.0001</td>
</tr>
<tr>
<td>$d_{78}^{f,q,y}$</td>
<td>0.075</td>
<td>0.0194</td>
<td>0.0001</td>
</tr>
<tr>
<td>$d_{89}^{f,q,y}$</td>
<td>0.066</td>
<td>0.0110</td>
<td><.0001</td>
</tr>
<tr>
<td>$d_{90}^{f,q,y}$</td>
<td>0.0084</td>
<td>0.0016</td>
<td><.0001</td>
</tr>
<tr>
<td>Q_2^y</td>
<td>0.131</td>
<td>0.11</td>
<td>0.2337</td>
</tr>
<tr>
<td>Q_3^y</td>
<td>0.053</td>
<td>0.1091</td>
<td>0.6249</td>
</tr>
<tr>
<td>Q_4^y</td>
<td>0.126</td>
<td>0.1092</td>
<td>0.2480</td>
</tr>
<tr>
<td>HHI_{od}</td>
<td>-2.254</td>
<td>0.1587</td>
<td><.0001</td>
</tr>
<tr>
<td>OEP_O</td>
<td>1.037</td>
<td>0.1028</td>
<td><.0001</td>
</tr>
<tr>
<td>OEP_D</td>
<td>0.521</td>
<td>0.1</td>
<td><.0001</td>
</tr>
<tr>
<td>R-square</td>
<td>0.9962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Effect of historical BT:**
 - Median(left tail): strong
 - The “inner right tail”: moderate — airline’s BTR target
 - Additional flight time above the 70th percentile: not strong

- **Competition (HHI):**
 - more competitive OD \rightarrow increase SBT
Comparison to Hypothetical Models

• **Model 1**: $SBT = \text{mean}(FT)$
 – Recall: $\text{mean} = \text{area above CDF}$
 – Calculate the area with difference in percentiles

$$SBT \approx 0.75 \times p_{50} + 0.45 \times d_{56} + 0.35 \times d_{67} + 0.25 \times d_{78} + 0.15 \times d_{89} + 0.05 \times d_{90}$$

• **Model 2**: $SBT = FTq$
 – According to airline, $q = 0.65 - 0.75$
 – For example, assuming $q = 0.7$:

$$SBT = 1 \times p_{50} + 1 \times d_{56} + 1 \times d_{67} + 0 \times d_{78} + 0 \times d_{89} + 0 \times d_{90}$$
Comparison to Hypothetical Models

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
<th>p-Value</th>
<th>Coefficient</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.011</td>
<td>0.214</td>
<td><.0001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D_{day_f}</td>
<td>0.039</td>
<td>0.0044</td>
<td><.0001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$Q^{f,q,y}_{0.5}$</td>
<td>0.936</td>
<td>0.0033</td>
<td><.0001</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>$d_{f,q,y}^{56}$</td>
<td>0.463</td>
<td>0.0309</td>
<td><.0001</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>$d_{f,q,y}^{67}$</td>
<td>0.236</td>
<td>0.0256</td>
<td><.0001</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>$d_{f,q,y}^{78}$</td>
<td>0.075</td>
<td>0.0194</td>
<td>0.0001</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>$d_{f,q,y}^{89}$</td>
<td>0.066</td>
<td>0.0110</td>
<td><.0001</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>$d_{f,q,y}^{90}$</td>
<td>0.0084</td>
<td>0.0016</td>
<td><.0001</td>
<td>0.05</td>
<td>0</td>
</tr>
</tbody>
</table>

- Hypothetical model 1
 - Median: more weight on median (left side of distribution)
 - Percentile differences: down-weight the right side of the distribution
 - Airlines tend to be “optimistic” when setting scheduled block-time
Comparison to Hypothetical Models

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
<th>p-Value</th>
<th>Coefficient</th>
<th>Hypothetical model 1</th>
<th>Hypothetical model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.011</td>
<td>0.214</td>
<td><.0001</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>D^{ay}_{f}</td>
<td>0.039</td>
<td>0.0044</td>
<td><.0001</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>$Q^{f,q,y}_{0.5}$</td>
<td>0.936</td>
<td>0.0033</td>
<td><.0001</td>
<td>0.75</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$d^{f,q,y}_{56}$</td>
<td>0.463</td>
<td>0.0309</td>
<td><.0001</td>
<td>0.45</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$d^{f,q,y}_{67}$</td>
<td>0.236</td>
<td>0.0256</td>
<td><.0001</td>
<td>0.3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$d^{f,q,y}_{78}$</td>
<td>0.075</td>
<td>0.0194</td>
<td>0.0001</td>
<td>0.25</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$d^{f,q,y}_{89}$</td>
<td>0.066</td>
<td>0.0110</td>
<td><.0001</td>
<td>0.15</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$d^{f,q,y}_{90}$</td>
<td>0.0084</td>
<td>0.0016</td>
<td><.0001</td>
<td>0.05</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- Hypothetical model 2
 - Median: all flights consider the median value
 - Inner right tail weights shifted to the outer tail
 - Composite behavior, vary between flights, airlines
 - Some consideration given to far right tail
Outline

• Background and objectives
• Industry practice
• Empirical behavioral study
 – Data and modeling
 – Population model
 – Airline analysis
• Ongoing work
Airline Analysis

• Investigate heterogeneity in SBT setting behavior across airlines
 – Legacy v.s. low cost carriers: cost, market, competition
 – Difference across different legacy carriers

• Six airlines picked for study
 – United, American, Delta
 – JetBlue, Southwest, AirTran
New Variable for Legacy Carrier

• Legacy carriers have large hubs, own a majority of gates
• SBTs set shorter for hubs to avoid early arrivals
• Additional dummy variables for airline-specific hub airports: hub_{origin}, hub_{des}
Impact of BT Distribution

- Median value is a major predictor
- Delta–strong effect up to 80\(^{th}\) percentile
- United–only up to 60\(^{th}\) percentile: aggressively set SBT

- Delta and AA: conservative SBT setting
- United: more aggressive approach
- LCC: most comparable to population model
Market Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>LCC</th>
<th>AA</th>
<th>DL</th>
<th>UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercep</td>
<td>1.909(3.75)</td>
<td>2.304(2.35)</td>
<td>1.773(1.10)</td>
<td>5.632(8.66)</td>
</tr>
<tr>
<td>Dist_{od}</td>
<td>0.0046(4.61)</td>
<td>0.0027(2.41)</td>
<td>0.00496(2.59)</td>
<td>0.006(7.47)</td>
</tr>
<tr>
<td>HHI_{od}</td>
<td>0.9595(2.18)</td>
<td>-2.187(-3.97)</td>
<td>2.481(1.80)</td>
<td>-0.491(-0.88)</td>
</tr>
<tr>
<td>OEP_{O}</td>
<td>0.316(1.42)</td>
<td>0.365(0.6)</td>
<td>-0.222(-0.27)</td>
<td>0.387(0.99)</td>
</tr>
<tr>
<td>OEP_{D}</td>
<td>-0.935(-4.34)</td>
<td>-0.459(-1.16)</td>
<td>1.191(1.32)</td>
<td>1.068(2.75)</td>
</tr>
<tr>
<td>Hub_origin</td>
<td>-1.398(-4.2)</td>
<td>-2.308(-3.66)</td>
<td>-0.321(-1.03)</td>
<td></td>
</tr>
<tr>
<td>Hub_des</td>
<td>-1.459(-3.73)</td>
<td>-1.882(-3.23)</td>
<td>-0.799(-2.59)</td>
<td></td>
</tr>
<tr>
<td>R-square</td>
<td>0.9967</td>
<td>0.9955</td>
<td>0.9962</td>
<td>0.9976</td>
</tr>
<tr>
<td>Observatio n No.</td>
<td>2363</td>
<td>1825</td>
<td>586</td>
<td>1978</td>
</tr>
</tbody>
</table>

Market Variables

- **Large airport (OEP)**
 - Not significant except LCC
 - LCC set shorter SBT when flying into large airport

- **Competition (HHI)**
 - Delta, LCC: shorten SBT with high competition
 - AA: conservative

- **Hub airports (legacy)**
 - Shorter SBT for hub airports
 - Avoid early arrivals
Conclusion

• SBT setting is based on BTR (percentile) target

• Aggregate level
 – BTR targets range between 50% to 70%
 – Far right tail only has minor impact
 – Willing to experience delay in trade for shorter SBT

• Heterogeneity across airlines
 – UA: most aggressive
 – AA: least aggressive
 – High competition: Delta and LCC shorten SBT, AA prolongs SBT

• Gate delay is rarely considered
Outline

• Background and objectives
• Industry practice
• Empirical behavioral study
 – Data and modeling
 – Population model
 – Airline analysis
• Ongoing work
Ongoing Work

- Impact of change in historical BT
 - Different scenarios of changed BT distribution (average BT remains the same)
 - Consequent change in SBT, delay, on-time performance
 - Focusing on inner tails brings the best improvement

SBT reduction: 1 min per flight
Ongoing Work

• Impact of change in historical BT
 – Different scenarios of changed BT distribution (average BT remains the same)
 – Consequent change in SBT, delay, on-time performance
 – Focusing on inner tails brings the best improvement

SBT increase: 0.6 min per flight
Ongoing work

• Hypothetical scenarios confirm the effect of inner right tail on SBT

• Air Traffic Management procedures to realize the adjustment to BT distribution
 – Re-sequencing the departure queue
 – Priority to flights predicted to be in the higher percentile of its historical BT distribution
 – Push the distribution towards the center

• Explore incorporating historical gate delay into SBT
Thank you!
Ongoing Work

• Impact of change in historical BT
 – Different scenarios of changed BT distribution (average BT remains the same)
 – Consequent change in SBT, delay, on-time performance
 – Focusing on inner tails (Scenario 1) brings the best improvement

<table>
<thead>
<tr>
<th>Per Flight Improvement</th>
<th>Original</th>
<th>Scenario1</th>
<th>Scenario2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBT</td>
<td>146.564</td>
<td>145.618</td>
<td>147.154</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.946</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>-2.034</td>
<td>-1.088</td>
<td>-2.623</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.946</td>
<td>-0.589</td>
<td></td>
</tr>
<tr>
<td>Positive Delay</td>
<td>4.219</td>
<td>4.129</td>
<td>3.505</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.09</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>Negative Delay</td>
<td>6.253</td>
<td>5.217</td>
<td>6.128</td>
</tr>
<tr>
<td>Reduction</td>
<td>1.036</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>on-time performance</td>
<td>0.7999</td>
<td>0.8061</td>
<td>0.8177</td>
</tr>
<tr>
<td>Improvement</td>
<td>0.0062</td>
<td>0.0178</td>
<td></td>
</tr>
<tr>
<td>A0 on-time performance</td>
<td>0.5698</td>
<td>0.6021</td>
<td>0.582</td>
</tr>
<tr>
<td>Improvement</td>
<td>0.0323</td>
<td>0.0122</td>
<td></td>
</tr>
</tbody>
</table>