A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Hartmut Fricke, Christoph Thiel

June 2013
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Faculty of Transportation and Traffic Sciences, Institute of Logistics and Aviation, Chair of Air Transport Technology and Logistics • Company for Air Traffic Safety Research, GfL

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
Obstacle Clearance – Setting the Scene

- **Standards:** **ICAO Annex 14, PANS OPS Doc. 8168**
- **In 2014 EASA CS ADR DSN** entering into force
- **Review shows:** Existing regulations on obstacle clearance ~ collision risk allocation are “suspicious”:

<table>
<thead>
<tr>
<th>TLS in Aviation</th>
<th>Source</th>
<th>Flight Phase</th>
<th>TLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAO ANNEX 10</td>
<td>Enroute</td>
<td>5.00E-9</td>
<td></td>
</tr>
<tr>
<td>ICAO A-SMGCS</td>
<td>Ground Roll</td>
<td>1.00E-8</td>
<td></td>
</tr>
<tr>
<td>ICAO CRM</td>
<td>ILS Approach</td>
<td>1.00E-7</td>
<td></td>
</tr>
<tr>
<td>Eurocontrol</td>
<td>All (ATM related)</td>
<td>1.55E-8</td>
<td></td>
</tr>
</tbody>
</table>

ICAO Doc. 9774 allows violations if an **Aeronautical Study** shows equivalent safety levels – but how?

Fatal Accidents per Flight Phase (2002-2011)

- Total: 79 accidents
- Accident Rate: 0.39 per million departure
- Landing 20%
- Takeoff 10%
- Initial climb 6%
- Initial approach 14%
- Descent 4%
- Cruise 11%

Source: Boeing Statistical Summary, July 2012
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
Impact Domains

Runway Design
- Set of surfaces limiting objects (OAS, OLS, OIS, OFZ,...)

Procedure Design
- 3D for any NAV concept with IFR/VFR ambiguity: instrument approach ends at OCA/H - VSS as a visual segment

Aircraft Certification
- EASA CS 25 / FAA Part 25 consider aerodynamic and flight control issues with degraded flight performance

Source: ICAO Annex 14, Att B; p 313
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Faculty of Transportation and Traffic Sciences, Institute of Logistics and Aviation, Chair of Air Transport Technology and Logistics • Company for Air Traffic Safety Research, GfL

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
Minimum Requirements Analysis

- Different “safety surfaces” = different minimum performance:

\[
\frac{\text{ROC}}{\text{ROD}}_{\text{min}} = \frac{\text{TAS}}{\sin \gamma_{\text{min}}} \approx \frac{\text{CAS}}{\gamma_{\text{min}}}
\]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Flight Phase</th>
<th>Surface Angle (\gamma) [°]</th>
<th>Minimum ROC/ROD [ft/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>DEP/APP</td>
<td>1.145</td>
<td>300</td>
</tr>
<tr>
<td>OAS</td>
<td>APP</td>
<td>-1.62</td>
<td>430</td>
</tr>
<tr>
<td>OAS</td>
<td>Missed APP</td>
<td>1.43</td>
<td>380</td>
</tr>
<tr>
<td>Net TO</td>
<td>Flight Path</td>
<td>1.89</td>
<td>500 (incl. 0.8% safety margin)</td>
</tr>
</tbody>
</table>

- No consistency while assessing flight safety in different conditions / flight phases
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Cross Sections

- Height of ILS glidepath
- ANP corridor lat/vert
- PANS OPS OAS Surface
- Annex 14 OLS Surface

Margin between ILS height and:
- OAS Surface: 144.5 m
- OLS Surface: 179.0 m

Dr. Hartmut Fricke
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Cross Sections

- Height of ILS glidepath
- ANP corridor lat/vert
- PANS OPS OAS Surface
- Annex 14 OLS Surface

Margin between ILS height and OAS Surface: 96.6 m, OLS Surface: 114.2 m
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Cross Sections

- Height of ILS glidepath
- ANP corridor lat/vert
- PANS OPS OAS Surface
- Annex 14 OLS Surface

Margin between ILS height and OAS Surface: 72.7 m, OLS Surface: 81.7 m
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Faculty of Transportation and Traffic Sciences, Institute of Logistics and Aviation, Chair of Air Transport Technology and Logistics • Company for Air Traffic Safety Research, GfL
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Cross Sections

Height of ILS glidepath

ANP corridor lat/vert

PANS OPS OAS Surface

Annex 14 OLS Surface

Margin between ILS height and

OAS Surface
OLS Surface

36,9 m 33,1 m

OAS below OLS
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke
Safety Assessment Methodology - Architecture

- ICAO Doc 9774: “An aeronautical study is ... to identify ... a solution that is acceptable without degrading safety”
- Hazard = collision with a non-compliant obstacle.
Safety Assessment Architecture – Normal Operations Model (NOM)

- Represent more than 99% of all operations at large airports
- Processing historic aircraft track data at the investigated airport (>6 months)
- Real track data combined to the defined track data → offset probability density function (comparable to ICAO PBN Concept)
- Gauss distribution is typical
- Integration of the local PDF to an Obstacle
- Comparison of the calculated Collision Risk to a preset TLS
Degraded Operational Performance Model (DOM)

- Empirical frequency < 1% of all operations
- But increased obstacle collision risk especially if combined with additional adverse environmental conditions (e.g. OEI and strong crosswind)

- Model is applied for **Approach/Missed Approach** and **Takeoff** scenarios
- Flight performance analysis is embedded in a **5-step evaluation scheme**
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Faculty of Transportation and Traffic Sciences, Institute of Logistics and Aviation, Chair of Air Transport Technology and Logistics • Company for Air Traffic Safety Research, GfL

DOM 5-step Evaluation Scheme (1)

DOM Step 1: Vertical Performance Analysis
- "Do all aircraft pass the obstacle safely even though a direct trajectory towards the obstacle is assumed?"

DOM Step 2: Procedure Design Analysis
- "Does the obstacle violate any departure or approach procedures clearance requirements?"

DOM Step 3: Lateral Performance Analysis
- "Is the obstacle’s location critical even if we assume OEI and adverse wind conditions?"

Hazard detected: Continue
Else
Analysis completed
DOM 5-step Evaluation Scheme (2)

DOM Step 4

• Critical Trajectory Lat. Performance Check
 • “Is the developed most critical trajectory flyable at all in terms of flight performance and flight mechanics?”

DOM Step 5

• Critical Trajectory Vert. Performance Check
 • “Are those aircraft flying the most critical trajectory able to ensure clearance to cross the obstacle safely?”

• Mitigation Measures (if required)
 • Cancel published/critical route
 • Set stricter prerequisites (e.g. PDG) for that route
 • Provide hot spot infos in AIP / NOTAM

Hazard detected: Continue
Else
Analysis completed
Risk Mitigation
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
Applied Safety Case: Frankfurt Main Airport

- 80m tall tower building
- Violating the OLS of the center RWY 25C/07C and the south RWY 25L/07R
- OAS not violated
Safety Case: Frankfurt Main Airport - NOM Application

Outbound Traffic
- Analyzing all departure routes from RWY 07C
- Flight tracks turning north are most relevant (Route BIBTI E)
- Collision Risk:
 - $\text{XTT}: 2.10E-115$
 - $\text{VTT}: 1.97E-02$
 - Combined: $4.13E-117$

Inbound Traffic
- Analyzing RWY 25C and 25R
- Nearly 99% are ILS approaches
- Collision Risk: $< 1E-117$

<table>
<thead>
<tr>
<th>Distance from DER [m]</th>
<th>VERTICAL Sigma [m]</th>
<th>VERTICAL VTT [NM]</th>
<th>LATERAL Sigma [m]</th>
<th>LATERAL XTT [NM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>85.0</td>
<td>0.092</td>
<td>43.5</td>
<td>0.047</td>
</tr>
<tr>
<td>500</td>
<td>85.9</td>
<td>0.093</td>
<td>44.8</td>
<td>0.048</td>
</tr>
<tr>
<td>600</td>
<td>86.6</td>
<td>0.094</td>
<td>45.7</td>
<td>0.049</td>
</tr>
<tr>
<td>700</td>
<td>87.2</td>
<td>0.094</td>
<td>46.7</td>
<td>0.050</td>
</tr>
<tr>
<td>800</td>
<td>87.9</td>
<td>0.095</td>
<td>47.7</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Statistical Parameter along the flight track (Outbound)
Safety Case: Frankfurt Main Airport - DOM Application (1)

- Identified hazard scenarios
 1. APP RWY 25R
 2. MA RWY 07L
 3. MA RWY 07L 07C
 4. TO RWY 07C
- Aircraft: traffic mix analysis

DOM Step 1

Vertical Performance Analysis:
- Minimal Climb Requirements: EASA CS 25
- Results:
 - scenarios 1, 2 & 3 passed
 - scenario 4 does not pass

<table>
<thead>
<tr>
<th>Scenario 4: Obstacle Clearances [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Engines</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-46.10</td>
</tr>
</tbody>
</table>
DOM Step 2 (Procedure Design Analysis):

- Phase 1: Analyzing most critical DEP route (EU-OPS 1.495)
- Phase 2: Examination of OIS and PDG (ICAO PANS-OPS Vol. II)
- Phase 3: Examination of turn protection areas (ICAO PANS-OPS Vol. II)

→ Results: No violations concerning Phase 1 & Phase 2

Obstacle is located inside protection area (Phase 3)

DOM Step 3 (Lateral Performance Analysis):

Lateral compliance for all scenarios Vertical violation for scenario 4
Safety Case: Frankfurt Main Airport - DOM Application (3)

DOM Step 4 (Lateral Flyability of Critical Trajectory):
- Determination of aircraft types being able to fly critical trajectory
 \[v = \sqrt{r \cdot g \cdot \tan(\Phi)} \geq v_2 \]
- Results:
 - Only small aircraft (e.g. Cessna C525/Beechcraft B200GT) can comply with assumed trajectory

DOM Step 5 (Vertical Performance Analysis of Critical Trajectory):
- Determination of climb gradients and lift-off points for these aircraft with OEI
- Results:
 - Critical aircraft category can safely overfly the obstacle with required clearance

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Climb Gradient [%]</th>
<th>Lift-off Point [m]</th>
<th>Crossing Altitude [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B200GT</td>
<td>5.5</td>
<td>840</td>
<td>160.80</td>
</tr>
<tr>
<td>C525A</td>
<td>3.6</td>
<td>1550</td>
<td>52.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed (v)</td>
<td>[m/s]</td>
<td>(\approx 54) (105 kt)</td>
</tr>
<tr>
<td>Turn Radius (r)</td>
<td>[m]</td>
<td>1.100</td>
</tr>
<tr>
<td>Maximum Bank Angle (\Phi)</td>
<td>[°]</td>
<td>15</td>
</tr>
<tr>
<td>Takeoff Safety Speed (v_2)</td>
<td>[m/s]</td>
<td>(\leq 54) (105 kt)</td>
</tr>
</tbody>
</table>
A Methodology to Assess the Safety of Aircraft Operations when Aerodrome Obstacle Standards cannot be met

Dr. Hartmut Fricke

Faculty of Transportation and Traffic Sciences, Institute of Logistics and Aviation, Chair of Air Transport Technology and Logistics • Company for Air Traffic Safety Research, GfL

Agenda

1. Obstacle related Safety Assessment: Status Quo
2. Obstacle Clearance Impact Factors
3. Determination of non compliant Obstacles
4. Proposed Safety Assessment Methodology
5. Applied Safety Case: Frankfurt Main Airport
6. Conclusions: a balanced risk picture
Conclusions: Achieving a consistent Risk Assessment

• ICAO does not provide guidance on how to perform aeronautical studies yet
• The presented model provides a systematic clearance check procedure through estimating risk for the hazard “obstacle collision”
• Methodology was accepted for Frankfurt Airport – candidate for smaller Airports in ongoing projects
• Model to detail ICAO DOC 9774, Appendix 3 as supplement
• Alleviate discrepancies of existing OAs based on a cause – hazard – consequence analysis
• Update of ICAO PANS-OPS (OAS, CRM) with regard to today’s standards and aircraft performance capabilities