An Investigation of Flight Deck Data Link in the Terminal Area

Sandy Lozito
NASA Ames Research Center

Lynne Martin
San Jose State University

Vicki Dulchinos
San Jose State University

Shivanjli Sharma
SGT, Inc.

John Kaneshige
NASA Ames Research Center

Funded by the FAA: Scientific & Technical Advisor for Human Factors NextGen Advanced Concepts and Technology Development Human Factors Division (ANG-C1)
Time-based scheduling provides runway arrival schedule and time constraints for arriving aircraft.

En route speed & path assignments deliver aircraft so they are correctly spaced for descending on the profile.

Flight crews fly VNAV descents along RNAV RNP route – largely without controller intervention.

Aircraft are delivered to TRACON meter fixes according to a time-based schedule. Aircraft arrive with spacing errors that need to be reduced to maximize throughput and minimize spacing violations.

TRACON controllers correct residual spacing errors and cope with disturbances & off-nominal events using tools based on 4D trajectories.

All aircraft are have advanced flight deck automation and a significant number of the aircraft are assumed to be equipped with data link for trajectory clearance delivery.

Concept for Arrival Aircraft on RNAV- Required Navigation Precision (RNP) /Optimal Profile Descents (OPD)
Data Link and NextGen/SESAR

- NextGen and SESAR have operational procedures intended for terminal area implementation
- These procedures will continue to require the use of more data transfer for automation
- Data link has benefits and drawbacks for clearance delivery in the terminal area
- Few studies have focused on terminal area data link
Outline

- Background
- Objectives
- Methods
- Results
- Summary
- Next Steps
Data link is an enabling technology for NextGen/SESAR

- Allows for message permanence to handle long, complex messages for trajectory-based operations
- Enables broader use of automation
- Allow for direct entry of data into flight deck automation, which may reduce pilot errors (Logsdon, 1996)
Controller Pilot Data Link Communications (CPDLC) to address voice frequency constraints
- Maastricht Control Center
- Future Air Navigation System 1/A (FANS 1/A)

Data link is not expected to fully replace voice due to equipage and operational constraints
Background

- Data link research suggests that its use addresses existing voice communications problems, but creates new issues (Kerns, 1999; van Gent, 1995)
- Data link does not appear to reduce workload, but redistributes it (Kerns, 1991)
 - Current implementations of flight deck data link are textual/visual
 - Message permanence allows for interruption of communication tasks
- Data link has longer crew response times (Lozito et al., 2003) which may be particularly important for the terminal area
Objectives

- Examine the use of a current-day flight deck data link in the terminal area (San Francisco-SFO)

- There were three primary variables of interest
 - Message modality (voice and data link)
 - Message length (short and long)
 - Strategic v. tactical messages

- Impact of these variables upon communication efficiency was investigated
 - Response times
 - Communication clarifications and errors
Methods
Simulation Details

- Human-in-the-loop simulation
- Ten Boeing 747-400-qualified crews
- Boeing 747-400 Level D simulator
- Six scenarios per crew (35 mins each) in SFO terminal area
- All scenarios had a mix of data link and voice clearances
- Data link messages from RTCA Message Set
- Controller and pseudopilot as a confederate
- Some background traffic was provided
- Questionnaires and measures
 - ATWIT (Air Traffic Workload Input Technique)
 - Questionnaires post-run and post-simulation
Data Link Message Example

2046z ATC UPLINK 1/1
STATUS OPEN
AT CINNY CLEARED ROUTE CLEARANCE,
EXPECT ILS28R.MENLO,
MAINTAIN FL370.
<STANDBY LOAD>
<REJECT ACCEPT>
<PRINT LOG>

INIT REF RTE CLB CRZ DES
DIR INTC LEGS DEP ARR HOLD
ATC FIX PROG EXEC
PREV PAGE NEXT PAGE
Experimental Procedure

- Briefing and training on data link
- Crews used their company data link procedures
- Each crew flies 6 scenarios into SFO terminal area
 - 3 different routes
 - Each flown twice
Routes in the SFO terminal

- Oceanic
- Big Sur
- Modesto
Experimental Procedures (2)

- Total of ~16 messages per scenario
- 50% messages in each scenario voice, 50% data link
- 50% of the messages in each scenario were strategic: Conditional clearance messages with a temporal constraint

 e.g., “Cross BOLDR at and maintain 10,000 feet”

- Short messages (1 element) v. long messages (3 elements)

 “Cleared for the Modesto 3 arrival
 Cross CEDES at 11,000 feet and
 Cross OOMEN at or below 7000 feet”

 - Element refers to speed, route, or altitude component
 - About 5 of each per scenario

- Autoload messages v. manual load messages

 - About 4 autoloadable messages in one half of the scenarios
 - Compare to manual load messages with same message content
Results
Acknowledgment Times

- Acknowledgment time definitions
 - Voice: When controller begins speaking to end of pilot’s speech
 - Data link: From crew notification of message to when crew has “accepted” or “rejected” the message

- Data link acknowledgment times were significantly longer than voice acknowledgment times (p<.001)

- Data link messages that could be autoloaded had longer acknowledgment times v. those that required manual loading
Longer times for data link autoload was unexpected; possibly associated with pilots’ cross-checking of autoload entry into the Flight Management System (FMS)
Clarifications and Errors

- Clarification and errors seen as indication of crew confusion
- Clarification: A query related to the content of an ATC message between the pilots or between a pilot and controller (e.g., “what was our speed?)
 - Within crew clarification: between crew members
 - Air-ground clarification: between pilot and controller
- Error: An erroneous statement (not action) related to the content of a ATC message between the pilots or between a pilot and controller (e.g., “He gave us 250 on the speed” when actual clearance statement was 260)
 - Within crew error: between crew members
 - Air-ground error: between pilot and controller
Number of Clarifications and Communication Errors by Communication Mode

- No significant differences for clarifications
- Significant difference between data link and voice for communication errors ($p < .05$)
Means reveal more air-ground (pilot to controller) clarifications and errors in voice compared to data link.

Data link message has permanence, and reduces air-ground voice errors.
Number of Clarifications and Errors by Conditionality of Message, Mode, and Interaction type

- Significantly more clarifications and errors for conditional clearances (errors: $p<.001$; clarifications: $p<.001$)
- Confusion about clearance content and temporal constraints of clearance
Number of Clarifications and Errors by Length of Clearance, Mode, and Interaction Type

- Significantly more clarifications (p<.01) and errors (p<.001) for long messages
- More air-ground clarifications for long voice messages when compared to short voice messages and data link messages
- Voice messages encourage the use of voice frequency
Debrief Comments

- Pilots generally thought data link was acceptable in the terminal area.
- Some pilots stated the need for a better implementation of the flight deck data link.
- Pilots endorsed the autoload capability for reducing heads-down time and data entry steps.
Summary

- HITL investigating the use of a current-day flight deck data link for terminal-area NextGen/SESAR clearance
- Longer data link acknowledgment times
- General reduction in air-ground clarifications in long data link messages compared to long voice messages
- Strategic (conditional) clearances being considered for NextGen/SESAR may introduce an increase in crew confusion
Next Steps

- The use of other flight deck implementations of data link for NextGen/SESAR automation tools
- Simulation integrating flight deck and ground automation for data link messages
THANK YOU!

QUESTIONS?